
2020 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2020, ESPOO, FINLAND

ROBUST SEMIPARAMETRIC JOINT ESTIMATORS OF LOCATION AND SCATTER IN
ELLIPTICAL DISTRIBUTIONS

Stefano Fortunati, Alexandre Renaux, Frédéric Pascal
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ABSTRACT
This paper focuses on the joint estimation of the location vec-
tor and the shape matrix of a set of Complex Elliptically Sym-
metric (CES) distributed observations. This well-known esti-
mation problem is framed in the original context of semipara-
metric models allowing us to handle the (generally unknown)
density generator as an infinite-dimensional nuisance param-
eter. A joint estimator, relying on the Tyler’s M -estimator of
location and on a new R-estimator of shape matrix, is pro-
posed and its Mean Squared Error (MSE) performance com-
pared with the Semiparametric Cramér-Rao Bound (CSCRB).

Index Terms— Elliptical distribution, robust estimator,
covariance estimation, semiparametric model, efficiency.

1. INTRODUCTION

Among the wide range of statistical tools exploited in Ma-
chine Learning (ML), covariance matrix estimators are cer-
tainly of primary importance [1]. In fact, popular ML infer-
ence methods, e.g. image segmentation, clustering, dimension
reduction and distance learning, rely on covariance matrix es-
timation as a first preliminary step. The concept of covari-
ance matrix implies the existence of a statistical model able
to describe the data behaviour and consequently, the possi-
bility to derive inference algorithms based on it. A common
approach in many ML inference problems is the model-based
one that consists in considering the available data as sampled
from a known probability density function (pdf) with possi-
bly unknown fixed parameters. More formally, let {zl}Ll=1

be a set of L independent and identically distributed (i.i.d.)
N -dimensional observations sharing the same pdf, i.e. CN 3
zl ∼ pZ , ∀l. In model-based inference, pZ is assumed to
belong to a parametric model Pθ , {pZ |pZ(zl;θ),θ ∈ Θ}
that represents a family of pdfs parametrized by a finite di-
mensional vector θ ∈ Θ ⊆ Cq . In multivariate Gaussian-
based inference, for example, θ is set up by the mean vec-
tor µ and by the vectorized version of the covariance/scatter
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matrix vec(Σ),1 i.e. θ , (µT ,µH , vec(Σ)T )T . Note that,
since we are considering the general case of complex param-
eter vectors, the use of Wirtinger calculus is required [2]. This
is the reason why, in θ the entries of the mean vector and of
the (Hermitian) covariance/scatter matrix have to be listed to-
gether with theirs complex conjugates.

Due to its simplicity, the Gaussian assumption has been
of mainstream use for decades. However, extensive statistical
analysis, performed in a large number of applications, have
shown the ubiquitous non-Gaussian nature of the data.

Different statistical models, aiming at combining the
“conciseness” of the Gaussian one with the heavy-tailed be-
haviour of the observed data, have been developed in statis-
tic and ML literature. Among others, a non-Gaussian data
model, that has been recognized to provide a reliable charac-
terization of the data behaviour in many applications [3, 4],
is the set of Complex Elliptically Symmetric (CES) distri-
butions [5]. Each pdf pZ belonging to the CES model is
parametrized by a finite-dimensional parameter vector of in-
terest θ ∈ Θ ⊆ Cq and by an infinite-dimensional parameter,
usually called density generator, G 3 h : R+ → R+ that
characterizes the data non-Gaussianity and that is generally
unknown. In particular, as in the Gaussian case, θ accounts
for a location parameter µ ∈ CN and the covariance structure
of the data. Due to the well-known scale ambiguity affect-
ing the CES model, the covariance/scatter matrix Σ is not
identifiable and only scaled versions, usually called shape
matrices, V , Σ/s(Σ) can be estimated [5]. The rigor-
ous definition of the assumptions that a scale functional s(·)
has to satisfy can be found in [6–8]. Here, following [8],
among all the possible s(·), we choose the one that forces
the shape matrix to have the first top-left entry equal to 1, i.e.
s(Σ) = [Σ]1,1. According to the notation introduced in [8],
the resulting (Hermitian and positive-definite) shape matrix
will be indicated as V1 , Σ/[Σ]1,1. By relying again on the
Wirtinger calculus, the finite dimensional parameter vector θ

1The standard vectorization operator vec maps column-wise the entry of
an N ×N matrix A in an N2-dimensional column vector vec (A).
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that uniquely parametrizes the CES model, is given by: 2

θ , (µT ,µH , vec(V1)T )T ∈ Θ ⊆ Cq, (1)

where q = N(N + 2) − 1 (= 2N + N2 − 1). Note that the
term “2N” is due to the location µ ∈ CN and to its conjugate,
the term “N2” represents the total number of entries of the
shape matrix V1, while the “−1” is due to the constraint on
its first top-left element. The infinite-dimensional parameter
h, characterizing the CES pdf pZ , belongs to the set G ={
h : R+ → R+

∣∣∫∞
0
tN−1h(t)dt <∞,

∫
pZ = 1

}
[5].

Due to the “mixed” (both finite and infinite) dimensional-
ity of its parameter space, the CES model can then be framed
in the context of semiparametric models [9]. In particular, as
already shown in [6, 7] and in [10, 11], the CES model is the
set of pdf pZ ≡ CESN (µ,V1, h) such that:

Pθ,h =
{
pZ |pZ(z|θ, h) = |V1|−1×

h
(
(z− µ)HV−11 (z− µ)

)
;θ ∈ Θ, h ∈ G

}
,

(2)

Inference problems in CES models then involve the es-
timation of θ ∈ Θ in the presence of a functional nuisance
parameter represented by the density generator h ∈ G.

Previous papers from both statistic [7] and signal process-
ing communities [8], have already investigated the possibility
to derive robust and semiparametric efficient estimators for
the shape matrix V1. Specifically, in the recent work [8], a
theoretical and simulative analysis of the “finite-sample” per-
formance of a new R-estimator of V1 is provided. Our aim
here is then to complete the analysis already developed in [8]
by investigating the joint estimation problem of the location
parameter µ and the shape matrix V1 in the presence of an
unknown density generator h.

Algebraic notation: For the sake of clarity, in the rest of
this paper, we adopt the same notation already introduced
in [8]. In addition to the list of symbols detailed in [8], we
will make extensive use of some specific matrices whose def-
initions are collected below. In particular:

LV1 , P
(
V
−T/2
1 ⊗V

−1/2
1

)
Π⊥vec(IN ), (3)

where V1 is the shape matrix previously introduced, P ,
[e2|e3| · · · |eN2 ]T where ei is the i-th vector of the canonical
basis of RN2

and Π⊥vec(IN ) , IN2 −N−1vec(IN )vec(IN )T .
CES-related notation: CES distributions have been the

subject of extensive theoretical and applicative-oriented re-
search papers and tutorial presentations. Here, we will col-
lected the very basic facts and notation that will be used in
the rest of this work. Let θ0 , (µT0 ,µ

H
0 , vec(V1,0)T )T

be the “true” parameter vector to be estimated and let h0
be the actual (and unknown) density generator. Let CN 3
z ∼ p0(z) ≡ pZ(z;θ0, h0) ≡ CESN (µ0,V1,0, h0) a CES-
distributed random vector characterized by a location vector

2The operator vec(A) defines the N2 − 1-dimensional vector obtained
from vec (A) by deleting its first element, i.e. vec (A) , [a11, vec(A)T ]T .

µ0, a shape matrix V1,0 , Σ0/[Σ0]1,1 where Σ0 represents
the relevant scatter matrix and a density generator h0 ∈ G.
Then, z satisfies the following stochastic representation:

z =d µ0 +
√
QΣ

1/2
0 u, (4)

where u ∼ U(CSN ) is a complex random vector uniformly
distributed on the unit N -sphere and =d stands for “has the
same distribution as”. The 2nd-order modular variate Q is
independent from u and such that:

Q =d (z− µ0)HΣ−10 (z− µ0) , Q, (5)

Moreover, Q is distributed according to the following pdf:

pQ,0(q) = πNΓ(N)−1qN−1h0(q), (6)

where Γ(·) is the Gamma function. For any h ∈ G, the func-
tion ψ is defined as

ψ(t) , d lnh(t)/dt. (7)

Finally, the expectation operator of any measurable func-
tion f with respect to p0(z) is indicated as E0{f(z)} ,∫
f(z)pZ(z;θ0, h0)dz.

2. ON THE SEMIPARAMETRIC JOINT
ESTIMATION OF LOCATION AND SHAPE

Let {zl}Ll=1 be a set of CES distributed vectors such that
CN 3 zl ∼ p0 ≡ CESN (µ0,V1,0, h0), ∀l. Our goal then is
to investigate the problem of jointly estimating µ0 and V1,0

in the presence of an unknown density generator h0.
The two fundamental questions that we are going to ad-

dress in this section are the following:

1. What is the impact of not knowing h0 on the joint esti-
mation of (µ0,V1,0)?

2. Which is the (asymptotic) impact that the lack of
knowledge of µ0 has on the estimation of V1,0 and
vice versa?

To answer these two questions, we need to introduce the
semiparametric efficient score vector s̄θ0 and the semipara-
matric Fisher Information Martix (SFIM) Ī(θ0|h0). As dis-
cussed in the relevant statistical literature for a generic semi-
parametric model [9] and recently investigated for the specific
CES model [10,11], the semiparametric efficient score vector
for the joint estimation of location and shape matrix of a set
of CES distributed data is given by:

s̄θ0 = [s̄Tµ0
, s̄Tµ∗

0
, s̄Tvec(V1,0)

]T = sθ0 −Π(sθ0 |Th0), (8)

where sθ0 is the “classical” score vector defined, by means of
the Wirtinger derivatives, as [11]:

[sθ0
]i , ∂ ln pZ(z;θ, h0)/∂θ∗i |θ=θ0

, i = 1, . . . , q (9)



and θ is given in (1) and q = N(N + 2) − 1. The term
Π(sθ0 |Th0) indicates the orthogonal projection of sθ0 on
the nuisance tangent space Th0

of the CES model Pθ,h in
(2) evaluated at the true density generator h0. Specifically,
Π(sθ0

|Th0
) tells us the loss of information on the estima-

tion of θ0 due to the lack of knowledge of h0. As shown
in [11, eq. (23)], the orthogonal projection operator of s̄Tµ0

and s̄Tµ∗
0

onto Th0 is equal to zero and consequently, the lack
of knowledge of h0 does not have any impact on the (asymp-
totic) estimation of the location parameter µ0. On the other
hand, not knowing h0 does have an impact on the estimation
of the shape matrix V1,0, since as proved in [11, eq. (24)],
Π(svec(V1,0)|Th0) 6= 0. This answers the first question.

To address the second point about the (asymptotic) cross-
information between µ0 and V1,0, we need to check the struc-
ture of the SFIM Ī(θ0|h0). The SFIM for the joint estimation
of µ0 and V1,0 in the CES semiparametric model Pθ,h in (2)
has been evaluated in [10, 11] as:

Ī(θ0|h0) , E0{s̄θ0
(zl)s̄

H
θ0

(zl)}

=

(
Ī(µ0|h0) 02N×(N2−1)

0(N2−1)×2N Ī(V1,0|h0)

)
,

(10)

Ī(µ0|h0) =
E{Qψ0(Q)2}

N

(
Σ−10 0N×N

0N×N Σ−∗0

)
, (11)

Ī(vec(V1,0)|h0) =
E{Q2ψ0(Q)2}
N(N + 1)

LV1,0L
H
V1,0

, (12)

where LV1,0
is defined in (3) and the function ψ0 is given

in (7). As we can clearly see from (10), the efficient SFIM
Ī(θ0|h0) is a block-diagonal matrix. This implies that the
cross-information terms between the location µ0 and the
shape matrix V1,0 are equal to zero. Consequently, the rel-
evant estimation problems are (asymptotically) decorrelated
and can be considered as two separate estimation problems.
In particular, in estimating the shape matrix V1,0, the true
(and generally unknown) location vector µ0 can be substi-
tuted by any of its

√
L-consistent estimators without any

impact on the (asymptotic) performance of the estimator of
V1,0. Of course, the vice versa holds true as well, i.e. any√
L-consistent estimator of V1,0 can be used in place of the

true shape matrix without any (asymptotic) impact on the
estimation of µ0. In the next Section, we exploit this result to
implement a robust, semiparametric efficient joint estimator
for the location and shape matrix in CES distributed data.

3. A ROBUST SEMIPARAMETRIC EFFICIENT
JOINT ESTIMATOR OF LOCATION AND SHAPE

Robust estimation of location and shape in elliptical distribu-
tions is a well-known topic in statistics and signal processing
since the seminal paper of Maronna [12]. Let us first recall
the framework we are interested in. As before, let {zl}Ll=1 be
a set of CES-distributed vectors such that CN 3 zl ∼ p0 ≡

CESN (µ0,V1,0, h0), ∀l. In [12], a general class of joint
M -estimators of µ0 and V1,0 (in the presence of an unknown
density generator h0) has been introduced as the “fixed-point”
solution of the following system of equations:∑L

l=1
u1(Q̂

1/2
l )(zl − µ̂) = 0, (13)

L−1
∑L

l=1
u2(Q̂l)(zl − µ̂)(zl − µ̂)H = V̂1, (14)

where, according to (5), Q̂l = (zl− µ̂)HV̂−11 (zl− µ̂), while
the functions u1 and u2 have to satisfy a given set of assump-
tions that guarantees the existence and the uniqueness of the
solution of (13) and (14) (see [12] for the real case and [5] for
the extension to the complex one).

3.1. Tyler’s joint M -estimator of µ0 and V1,0

Among different possible choices for u1 and u2, Tyler in [13]
(see also [3] and [4]) showed that the functions u1(Q) =
Q−1/2 and u2(Q) = NQ−1 lead to the “minimax robust”
M -estimator of the location and shape. Specifically, by defin-
ing

Q̂
(k)
l = (zl − µ̂(k))H [V̂

(k)
1 ]−1(zl − µ̂(k)), (15)

where k indicates the iteration number, we have that the
Tyler’s jointM -estimator of location and shape, i.e. (µ̂Ty, V̂1,Ty),
can be obtained as the convergence points (k → ∞) of the
following iterations:

µ̂
(k+1)
Ty =

[
L∑
l=1

[Q̂
(k)
l ]−1/2

]−1 L∑
l=1

(
Q̂

(k)
l

)−1/2
zl, (16)

{
V̂

(k+1)
Ty = N

L

∑L
l=1[Q̂

(k)
l ]−1(zl − µ̂

(k)
Ty )(zl − µ̂

(k)
Ty )H .

V̂
(k+1)
1,Ty , V̂

(k+1)
Ty /[V̂(k+1)

Ty ]1,1.
(17)

Note that, even if a formal proof of the joint convergence of
(16) and (17) is still an open problem, these iterative algo-
rithm has been shown to provide reliable estimates in most
of the scenarios of possible interest in practical applications.
We refer to [3] where joint M -estimators of the form (13)-
(14) have been exploited in hyperspectral anomaly detection
problems and to [4] where joint M -estimators have been de-
rived as part of a general Expectation-Maximization (EM) al-
gorithm for clustering applications.

The estimators µ̂Ty and V̂1,Ty have the remarkable prop-
erty of being

√
L-consistent under any (unknown) density

generator h ∈ G [13]. Consistency, however, is only one of
the properties that good robust estimators should have. An-
other important property is the (semiparametric) efficiency.

3.2. The Semiparametric Cramér-Rao Bound (SCRB)

With semiparametric efficiency we indicate the ability of a
robust estimator to achieve the Semiparametric Cramér-Rao



Bound (SCRB) [9] as the number of available observations L
goes to infinity. The SCRB for the specific estimation prob-
lem at hand has been recently derived in [10,11] as the inverse
of the SFIM in (10). As discussed before, since the efficient
score vectors for the location, i.e. s̄Tµ0

and s̄Tµ∗
0
, are orthogonal

to the nuisance tangent space Th0 , the SCRB on the estima-
tion of µ0 is equal to the “classical” CRB and it is given by

CRB(µ0|h0) , Ī(µ0|h0)−1

=
N

E{Qψ0(Q)2}

(
Σ0 0N×N

0N×N Σ∗0

)
.

(18)

On the other hand, since Π(svec(V1,0)|Th0
) 6= 0 [11, eq.

(24)], the SCRB on the estimation of the shape matrix V1,0

is tighter than the “classical” CRB (that is obtained for a
perfectly known h0) and is given by:

SCRB(vec(V1,0)|h0) , Ī(vec(V1,0)|h0)−1

=
N(N + 1)

E{Q2ψ0(Q)2}

[
LV1,0

LHV1,0

]−1
.

(19)

In [10,11], it has been shown that robust M -estimators of
the shape matrix are not semiparametric efficient. This effi-
ciency issue can be overcome by exploiting the results pro-
posed by Hallin, Oja and Paindaveine in [7] for the real case
and extended to the complex case in [8]. By combining the
Le Cam’s theory on “one-step” estimators and the robustness
property of rank-based inference procedure, in [7] a robust
semiparametric efficient R-estimator of V1,0 has been de-
rived and its “finite-sample” performance investigated in [8]
for the case of zero-mean CES observations. Here, an exten-
sion of the previously derived R-estimator of shape matrix is
provided to CES data with unknown mean, while Sec. 4 will
focus on a simulative analysis of its estimation performance.
Note that, due to the orthogonality between the efficient score
vectors of µ0 and the nuisance tangent space Th0

, the estima-
tion of the location parameter does not require any “one-step”
correction à la Le Cam.

3.3. An R-estimator of V1,0

In their seminal works [7] (see [8] for a tutorial discussion
and for the complex extension of these results), Hallin, Oja
and Paindaveine showed that a robust and semiparametric ef-
ficient estimator of the shape matrix can be obtained by ap-
plying a linear, “one-step”, correction to any

√
L-consistent

preliminary estimator V̂?
1 of V1,0, obtained from the centred

CES dataset {zl − µ̂?}Ll=1, where µ̂? is any
√
L-consistent

preliminary estimator of the location µ0. Due to their prop-
erties of minimax robustness and

√
L-consistency under any

density generator h ∈ G, the Tyler’s estimators previously in-
troduced may be good candidates for this role, i.e. µ̂? ≡ µ̂Ty
and V̂?

1 ≡ V̂1,Ty. Consequently, following the results ob-

tained in [8], an R-estimator of V1,0 is given by: 3

vec(V̂1,R) = vec(V̂1,Ty) +
1

Lα̂

[
LV̂1,Ty

LH
V̂1,Ty

]−1
×LV̂1,Ty

∑L

l=1
KvdW

(
r?l

L+ 1

)
vec(û?l (û

?
l )
H),

(20)

where {r?l }Ll=1 are the ranks4 of the continuous random vari-
ables {Q̂?l }Ll=1 such that:

Q̂?l , (zl − µ̂Ty)H [V̂1,Ty]−1(zl − µ̂Ty), (21)

while û?l are random vectors obtained as:

û?l , (Q̂?l )
−1/2[V̂1,Ty]−1/2(zl − µ̂Ty). (22)

Moreover, the data-dependent term α̂ is defined in [8, Sec.
IV.B], while the van der Waerden score KvdW : (0, 1)→ R+

is a function defined asKvdW(u) , Φ−1G (u) where Φ−1G indi-
cates the inverse function of the cdf of a Gamma-distributed
random variable with parameters (N, 1). It is important to
note that theR-estimator in (20) depends only on the ranks r?l
and on the vectors u?l whose statistics are invariant with re-
spect to the true (and generally unknown) data pdf [7,8]. This
is not the case for the Maronna’s and Tyler’s M -estimators
that directly rely on the collected data (and consequently on
their unknown pdf). Interestingly, the R-estimator in (20) is
in that sense more robust than M -estimators. To conclude,
the pseudocode for the implementation of the R-estimator in
(20) is provided in the following.

4. NUMERICAL RESULTS

In this last Section we finally assess, through numerical sim-
ulations, the semiparametric efficiency of the joint estimator
(µ̂Ty, V̂1,R), where µ̂Ty is the Tyler’s estimator in (16) of
the location vector µ0, while V̂1,R is the R-estimator in (20)
of the shape matrix V1,0 exploiting the Tyler’s joint estima-
tor (µ̂Ty, V̂1,Ty) as preliminary

√
L-consistent estimator. As

basis of comparison, we also report the performance of the
joint “sample” estimator (µ̂SM , V̂1,SCM ), defined as:

µ̂SM , L−1
∑L

l=1
zl, (23){

Σ̂SCM , L−1
∑L
l=1(zl − µ̂SM )(zl − µ̂SM )H

V̂1,SCM , Σ̂SCM/[Σ̂SCM ]1,1.
(24)

We generate the set of non-zero mean data {zl}Ll=1 ac-
cording to a Generalized Gaussian (GG) distribution [14],
such that CN 3 zl ∼ p0, ∀l where:

p0(zl) = |Σ0|−1h0
(
(zl − µ0)HΣ−10 (zl − µ0)

)
, (25)

3Matlab code at https://github.com/StefanoFor
4Let Ω , {ωl}Ll=1 be a set of continuous random variables and let Ωo ,

{ωL(1) < ωL(2) < . . . < ωL(L)} be a set containing the same elements of
Ω ordered in an ascending way. Then, the rank rl of ωl ∈ Ω is its position
index in Ωo.



Algorithm 1 R-estimator for V1,0

Input: z1, . . . , zL.
Output: V̂1,R.

1: Obtain the preliminary Tyler’s joint estimators:
µ̂Ty ← limk→∞ µ̂

(k)
Ty in (16),

V̂1,Ty ← limk→∞ V̂
(k+1)
1,Ty in (17),

2: Data centring: {zl}Ll=1 ← {zl − µ̂Ty}Ll=1,
3: for l = l to L do
4: Q̂?l ← zHl V̂−11,Tyzl,

5: û?l ← (Q̂?l )
−1/2V̂

−1/2
1,Ty zl,

6: end for
7: Evaluate the ranks {r?1 , . . . , r?L} of {Q̂?1, . . . , Q̂?L},
8: LV̂1,Ty

← P(V̂
−T/2
1,Ty ⊗ V̂

−1/2
1,Ty )Π⊥vec(IN ),

9: Evaluate α̂ as in [8, Sec. IV.B].
10: Υ̂← α̂LV̂1,Ty

LH
V̂1,Ty

,

11: ∆V̂1,Ty
← LV̂1,Ty

∑L
l=1KvdW

(
r?l
L+1

)
vec(û?l (û

?
l )
H),

12: vec(V̂1,R)← vec(V̂1,Ty) + L−1/2Υ̂−1∆V̂1,Ty
,

13: Reshape vec(V̂1,R) as an N ×N matrix,
14: return V̂1,R

while the relevant density generator is given by:

h0(t) ,
sΓ(N)b−N/s

πNΓ(N/s)
exp

(
− t

s

b

)
, t ∈ R+. (26)

We chose the GG distribution to assess the performance of the
proposed joint estimator because of its flexibility in character-
izing the data “heavy-tailness” with respect to the Gaussian
one. In fact, according to the value of the shape parameter
s > 0, the GG density generator in (26) is able to define a
distribution with both heavier tails (0 < s < 1) and lighter
tails (s > 1) compared to the Gaussian one (s = 1).

The parameters adopted in our simulations are:

• Σ0 is a Toeplitz Hermitian matrix whose first column is
given by [1, ρ, . . . , ρN−1]T ; ρ = 0.8ej2π/5 and N = 8.

• Shape matrix: V1,0 , Σ0/[Σ0]1,1.

• Location vector: [µ0]n , 0.5ej1π/7(n−1), n = 1, . . . , N .

• Scale parameter: b = [σ2
XNΓ(N/s)/Γ((N + 1)/s)]s

in (26) and σ2
X = E{Q}/N = 4.

• Numbers of observations: L = 5N . This clearly de-
fines a “finite-sample” regime.

The performance assessment will be performed in terms of
the following Mean Squared Error (MSE) indices:

%γ , ||E{(µ̂aγ − µa0)(µ̂aγ − µa0)H}||F , (27)

where, for a given x ∈ CN , xa , (xT ,xH)T ∈ C2N ,

ςγ , ||E{vec(V̂1,γ −V1,0)vec(V̂1,γ −V1,0)H}||F , (28)

and γ indicates the relevant estimator at hand. As lower
bound indices, we use εCRB,µ0

, ||CRB(µ0|h0)||F and
εSCRB,V1,0

, ||SCRB(vec(V1,0)|h0)||F ,where CRB(µ0|h0)
is given in (18) and SCRB(vec(V1,0)|h0) in (19).
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Fig. 1: Estimation of the location vector: MSE indices and
CRB vs s (L = 5N and 106 Monte Carlo runs).
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Fig. 2: Estimation of the shape matrix: MSE indices and
SCRB vs s (L = 5N and 106 Monte Carlo runs).

Fig. 1 shows the performance of the sample mean µ̂SM
estimator in (23) and of the Tyler’s estimator µ̂Ty in (16)
compared to the lover bound in (18). As wee can see, µ̂Ty is
almost efficient with respect to CRB(µ0|h0) in heavy-tailed
data (0 < s < 1) and outperforms µ̂SM that it is known to be
non robust. On the other hand, µ̂SM is efficient in the Gaus-
sian case (s = 1), and tends to have better performance than
µ̂Ty for s > 1. However, in this light-tails scenario, the MSE
of µ̂Ty does not explode and remains close to the µ̂SM ’s one.

As far it concern the shape matrix estimation, the simula-
tion results are shown in Fig. 2. The main fact here is that the
R-estimator V̂1,R in (20) outperforms the Tyler’s estimator
V̂1,Ty in (17) for every values of s, i.e. for both heavy-tailed
and light-tailed data. Moreover, as expected, V̂1,R greatly
outperforms the sample covariance matrix V̂1,SCM in (24) in
the presence of heavy-tailed data (0 < s < 1), while their
MSE is of the same order for s > 1. Finally, a comment



on the efficiency of the above-mentioned estimator is in or-
der. As we can see, there is a gap between the MSE indices
of V̂1,SCM , V̂1,Ty and V̂1,R. However, it is worth to un-
derline that our aim here is to compare the performance of
shape matrix estimators in a “finite-sample” regime, i.e. with
a number of observations equal to L = 5N that represents a
reasonable value in many practical applications. Of course,
by letting L → ∞, it can be shown that V̂1,R achieves the
bound SCRB(vec(V1,0)|h0) in (19) as predicted by theoreti-
cal considerations [7, 8].

In summary, previous simulations highlights the benefits
that the proposed robust R-estimator can bring. Specifically,
it always outperforms the Tyler’s estimator in both heavy- and
light-tails scenarios. Moreover its estimation performance is
way better that the SCM one in heavy-tailed data while it is
almost similar in light-tailed scenarios: high gain, very small
loss. These very promising results promote the use of the
R-estimator to other problems, as the structured shape esti-
mation discussed in [15].

5. CONCLUSIONS

The joint estimation of the location vector µ0 and the shape
matrix V1 of a set of i.i.d. CES-distributed, multivariate ob-
servations has been addressed. Building upon the asymptotic
decorrelation of the location and shape estimation problems, a
joint estimator that relies on the Tyler’s M -estimator µ̂Ty for
µ0 and on a recently proposed R-estimator V̂1,R for V1 has
been discussed and its MSE performance assessed and com-
pared with the relevant Semiparametric Cramér-Rao Bound.
Our simulation results, obtained for GG-distributed data, have
shown that joint estimator (µ̂Ty, V̂1,R) of location and shape
represents a good alternative to the classical Maronna’s joint
M -estimators. In particular, in terms of shape matrix esti-
mation, the proposed joint estimator outperforms the joint
Tyler’s estimator in both heavy-tailed and light-tailed data.
Future works will investigate the application of the proposed
estimator in robust clustering and distance learning problems.
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